ПATIIBIA UTIVERSITY
OF SCIEחCE AחD TECHחOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: VARIOUS	
QUALIFICATION CODE: VARIOUS	LEVEL: 6
COURSE NAME: PHYSICAL CHEMISTRY	COURSE CODE: PCH602S
SESSION: NOVEMBER 2022	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	Prof Habauka M Kwaambwa
MODERATOR:	Dr Euodia Hess

INSTRUCTIONS

1. Answer ALL the questions in Sections A and B.
2. Write clearly and neatly.
3. Number the answers clearly.

PERMISSIBLE MATERIALS

Non-programmable Calculators

ATTACHMENT

List of Useful Constants and Equation
THIS QUESTION PAPER CONSISTS OF 8 PAGES (Including this front page and a list of useful
constants and equation as an attachment)

There are 10 questions in this section. Choose the correct answer. Each question carries 2 marks.

1. An ideal gas at $27^{\circ} \mathrm{C}$ is heated at constant pressure until its volume is doubled. The final temperature is:
A. $54^{\circ} \mathrm{C}$
B. $327^{\circ} \mathrm{C}$
C. $108^{\circ} \mathrm{C}$
D. $654^{\circ} \mathrm{C}$
E. $600^{\circ} \mathrm{C}$
2. Which of the following is not an intensive property?
A. Pressure
B. Temperature
C. Density
D. Heat
E. Molar volume
3. For a reversible power cycle, the operating temperature limits are 800 K and 300 K . It takes in 400 kJ of heat. The unavailable work will be:
A. 250 kJ
B. 150 kJ
C. 120 kJ
D. 100 kJ
E. Zero
4. If $\Delta G^{\circ}<0$, then K is \qquad . If $\Delta G^{\circ}>0$, then K is \qquad If $\Delta G^{\circ}=0$, then K is \qquad .
A. $>1,<1,=1$
B. $<1,>1,=1$
C. $<0,>0,=0$
D. $>0,<0,=0$
E. $<1,>1,=0$
5. Which of the following is not one of the assumptions in the derivation of the ClausiusClapeyron equation?
A. $V_{\text {gas }} \ggg V_{\text {liquid }}$
B. Gas behaves as ideal gas, i.e. $\mathrm{V}=\mathrm{RT} / \mathrm{P}$ for 1 mole
C. $\Delta H_{\text {vaporisation }}$ is independent of temperature in a given range
D. Solid \rightleftharpoons Liquid
E. None of the above
6. A schematic diagram of the variation of concentration of the reactants and products with time for the reaction $3 W+X \rightarrow Y+2 Z$ is shown below. Which of the following is the most likely representation of the variation of the concentration of the reactants and products with time?
A. $I=W ; I I=X ; I I I=Z ; I V=Y$
B. $I=X ; \|=W ; I I I=Y ; I V=Z$
C. $I=W ; I I=X ; I I I=Y ; I V=Z$
D. $I=X ; \|=W ; I I I=Z ; I V=Y$
E. None of the above

7. Write a balanced reaction for which the following rate relationships are true.

Rate $=\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{~N}_{2}\right]}{\mathrm{dt}}=\frac{\mathrm{d}\left[\mathrm{O}_{2}\right]}{\mathrm{dt}}=-\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{~N}_{2} \mathrm{O}\right]}{\mathrm{dt}}$
A. $2 \mathrm{~N}_{2} \mathrm{O} \rightarrow 2 \mathrm{~N}_{2}+\mathrm{O}_{2}$
B. $\mathrm{N}_{2} \mathrm{O} \rightarrow \mathrm{N}_{2}+2 \mathrm{O}_{2}$
C. $2 \mathrm{~N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}$
D. $\frac{1}{2} \mathrm{~N}_{2} \mathrm{O} \rightarrow \frac{1}{2} \mathrm{~N}_{2}+\mathrm{O}_{2}$
E. Insufficient information
8. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{NO}_{3}(\mathrm{~g})$ proceeds as a first order reaction. Which equation below best gives the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ versus time profile?
A. $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0}}{\mathrm{t}_{0.5}}$
B. $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=\mathrm{kt}$
C. $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{\mathrm{o}} \mathrm{e}^{-\mathrm{kt}}$
D. $\frac{1}{\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}=\frac{1}{\left.\mathrm{~N}_{2} \mathrm{O}_{5}\right]_{0}}+\mathrm{kt}$
E. None of the above
9. The values for the change in enthalpy, ΔH, and the activation energy, E_{A}, for a given reaction are known. The value of E_{A} for the reverse reaction equals
A. E_{A} for the forward reaction
B. $-\left(E_{A}\right)$ for the forward reaction
C. the sum of $-(\Delta H)$ and E_{A}
D. the sum of E_{A} and ΔH
E. the difference between ΔH and E_{A}
10. The balanced equation for the reaction of nitrogen dioxide and fluorine is
$2 \mathrm{NO}_{2}+\mathrm{F}_{2} \rightarrow 2 \mathrm{NO}_{2} \mathrm{~F}$
The proposed mechanism is

| Step 1: $\quad \mathrm{NO}_{2}+\mathrm{F}_{2} \rightarrow \mathrm{NO}_{2} \mathrm{~F}+\mathrm{F}$ | slow |
| :--- | :--- | :--- |
| Step 2: $\quad \mathrm{F}+\mathrm{NO}_{2} \rightarrow \mathrm{NO}_{2} \mathrm{~F}$ | fast |
| Which of the following are correct? | |

(i) The mechanism supports an experimentally determined rate law of rate = $\mathrm{k}\left[\mathrm{NO}_{2}\right]^{2}\left[\mathrm{~F}_{2}\right]$
(ii) F is an intermediate
(iii) The reaction is first order with respect to F_{2}.
A. (i) only
B. (i) and (ii) only
C. (i) and (iii) only
D. (ii) and (iii) only
E. (i), (ii) and (iii)

SECTION B

There are FIVE questions in this section. Answer all Questions.

QUESTION 1

State whether each of the following statements is true or false. If false either correct it or state briefly the reason for its being false.
(a) $\mathrm{q}=\oint \mathrm{dq}=0$ and $\Delta \mathrm{T}=\oint \mathrm{dT}=0$, where q and T is the heat absorbed and temperature, respectively.
(b) The compressibility factor, $Z>1$ for many gases at high pressures is attributed to finite size of gas molecules and repulsive forces.
(c) $\Delta \mathrm{H}_{\text {combustion }}=\Delta \mathrm{U}_{\text {combustion }}$ for the combustion reaction
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(l)$
(d) For the reaction $2 \mathrm{C}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g}), \Delta \mathrm{H}_{\text {reaction }}^{0}=\Delta \mathrm{H}_{\mathrm{f}}^{\circ}(\mathrm{CO}(\mathrm{g}))$
(e) For a perfect crystalline substance, $\mathrm{S}_{0^{\circ} \mathrm{C}}=0$.
(f) $\left(\frac{\partial G}{\partial T}\right)_{P}=S$ and $\left(\frac{\partial U}{\partial T}\right)_{V}=C_{V}$

QUESTION 2

[13]
(a) State whether $q, w, \Delta U, \Delta H$ and ΔS are positive, negative or zero for reversible adiabatic expansion of an ideal gas.
(b) A sample consisting of 2.00 mol argon (assume to behave as ideal gas) is expanded reversibly and isothermally at $0^{\circ} \mathrm{C}$ from $22.4 \mathrm{dm}^{3}$ to $44.8 \mathrm{dm}^{3}$. For this process, calculate $q, w \Delta U$ and ΔH.

QUESTION 3

(a) Estimate the enthalpy change of formation for $\mathrm{NH}_{3}(\mathrm{~g})$ at $100^{\circ} \mathrm{C}$ given:
$\frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g}), \Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left(25^{\circ} \mathrm{C}\right)=-46.11 \mathrm{kJmol}^{-1}$
$\mathrm{C}_{\mathrm{p}}\left(\mathrm{N}_{2}, \mathrm{~g}\right)=29.12 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{C}_{\mathrm{p}}\left(\mathrm{H}_{2}, \mathrm{~g}\right)=28.82 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{C}_{\mathrm{p}}\left(\mathrm{NH}_{3}, \mathrm{~g}\right)=35.06 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
(b) Calculate $\Delta \mathrm{G}^{\circ}$ for 1 mole of $\mathrm{N}_{2} \mathrm{O}_{4}$ decomposition at 298 K , given $\mathrm{K}_{\mathrm{p}}=0.163$. If $\Delta \mathrm{S}^{\circ}$ for the reaction is $184.2 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ at 298 K , calculate $\Delta \mathrm{H}^{\circ}$ at $298 \mathrm{~K}^{2}$.
(c) The equilibrium constant of the reaction
$\left.\left.\mathrm{COCl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}\right) \mathrm{g}\right)+\mathrm{Cl}_{2}(\mathrm{~g})$
was determined as a function of temperature and the data was fitted using the linear form of the van't Hoff isochore and the result was:
$\ln \mathrm{K}_{\mathrm{p}}=\frac{14080}{\mathrm{~T}}+17.85$
Use these results to obtain $\Delta H^{\circ}, \Delta S^{\circ}$ and ΔG°.
(d) Is the reaction in (c) above endothermic or exothermic? Give a reason for you answer. Which linear plot A or B in the diagram below best represents this reaction?

Using the diagrams I and II below for a given pure liquid, answer the following questions:
(a) Sketch diagram I and on the same diagram show the effect of solute and label the positions of the melting point and boiling point of both the liquid and solution.
(b) Calculate the degrees of freedom at A, B and C in diagram II.
(c) The $\Delta \mathrm{H}_{\text {sublimation }}$ of pure liquid is $60.5 \mathrm{~kJ} / \mathrm{mol}$, while its $\Delta \mathrm{H}_{\text {vaporization }}$ is $48.0 \mathrm{~kJ} / \mathrm{mol}$. What is the $\Delta H_{\text {fusion }}$ of the pure liquid?
(d) If the boiling point of the pure liquid in (c) is $184.3^{\circ} \mathrm{C}$, calculate the entropy of vaporisation ($\Delta \mathrm{S}_{\mathrm{v}}$) and comment on the result.

QUESTION 5

(a) What is the overall order of the reaction described by each of the rate expressions below? State the units of the rate coefficient, k, if the rate is in moldm ${ }^{-3} \mathrm{~s}^{-1}$.
(i) Rate $=k \frac{[A]^{1.5}}{[B]^{1.5}}$
(ii) Rate $=\mathrm{k}[\mathrm{A}][\mathrm{B}]^{0.5}[\mathrm{C}]^{1.5}$
(b) Nitrogen pentoxide $\left(\mathrm{N}_{2} \mathrm{O}_{5}\right)$ gas decomposes according to the reaction
$2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
At 328 K , the rate of the reaction under certain conditions is $0.75 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$. Assuming that none of the intermediates have appreciable concentrations, determine the values of:
(i) $\frac{\mathrm{d}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]}{\mathrm{dt}}$
(ii) $\frac{\mathrm{d}\left[\mathrm{NO}_{2}\right]}{\mathrm{dt}}$
(iii) $\frac{\mathrm{d}\left[\mathrm{O}_{2}\right]}{\mathrm{dt}}$
(c) Consider a reaction $A \xrightarrow{k} P$. The integrated rate law for the reaction is:
$\frac{1}{[\mathrm{~A}]}-\frac{1}{[\mathrm{~A}]_{0}}=k t$
(i) State the two reaction requirements needed in order to derive the equation above.
(ii) What is the order of the reaction? What are the units of the rate constant if the rate is in $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~min}^{-1}$?
(iii) What plot would you construct to determine the rate constant, k, for the reaction? Label the axes on diagram and sketch the graph that you would expect.
(iv) Derive the half-life expression for this reaction.
(d) The table below gives experimental data for the half-lives, $t_{0.5}$, of different reactions as a function of the initial reactant concentration, C_{o}. Determine the order of each of the three reactions.

	$t_{0.5} / \mathrm{min}$		
$C_{o} /$ moldm $^{-3}$	Reaction 1	Reaction 2	Reaction 3
2	2	120	20
1	2	60	40

(e) The following questions refer to the popular demonstration called "Elephants Toothpaste" in which the mechanism is believed to be:
Step 1: $\quad \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{I}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{Ol}^{-}$slow
(i) Identify the catalyst.
(ii) Identify the intermediate.
(iii) Devise the overall chemical equation consistent with the mechanism provided.
(iv) Devise the rate law.
(v) For majority of the reactions, a catalyst speeds up the reaction by decreasing the energy of activation but for a few reactions, a catalyst speeds up the reaction but the energy of activation increases. Give a brief plausible reason.

LIST OF USEFUL EQUATION AND CONSTANTS

Van der Waals eq ${ }^{\text {n. }} \quad P=\frac{n R T}{V-n b}-\frac{n^{2} a}{V^{2}}=\frac{R T}{\bar{V}-b}-\frac{a}{\bar{V}^{2}}$

Universal Gas constant	R	$=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Boltzmann's constant,	k	$=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Planck's constant	h	$=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Debye-Hückel's constant,	A	$=0.509\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{1 / 2} \mathrm{or} \mathrm{mol}^{-0.5} \mathrm{~kg}^{0.5}$
Faraday's constant	F	$=96485 \mathrm{C} \mathrm{mol}^{-1}$
Mass of electron	m_{e}	$=9.109 \times 10^{-31} \mathrm{~kg}$
Velocity of light	C	$=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Avogadro's constant	N_{A}	$=6.022 \times 10^{23}$
1 electron volt (eV)		$=1.602 \times 10^{-19} \mathrm{~J}$

